If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+6y-20=0
a = 1; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·1·(-20)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{29}}{2*1}=\frac{-6-2\sqrt{29}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{29}}{2*1}=\frac{-6+2\sqrt{29}}{2} $
| 1/2x=10-1/3x | | x+x2=39 | | 2x+10+5x-17=180 | | (2k+10)=180 | | 3c-15=8c | | 7-4x+3=x-16- | | -5(1+6x)=17-8x | | 5(1+2m)=1/2(+20) | | -3(p+5)+8=2(p-1)-4p | | f=4-7-1 | | 64/x=16/18.5 | | a—2/9=2/3 | | 5x+10=5+10 | | 0.3+1.8=0.4x+1.8 | | -6(4n-2)=-180 | | 2x-5=—1+5x+2 | | y2-16y=9 | | 2-3g+1=19 | | -4.9t^2+14.7t-11.02=0 | | 5a+2=2a-7=4a=7 | | 2k+10=180 | | 4-7f=f-12= | | 3x+8=-2x+9 | | -x-4x-7x=2x-4x+1 | | 8.53z=-8z | | -5(4n-2)=-180 | | 19x=-171 | | 3x-8=-2x+9 | | 3x+15=8x+25= | | b-3+6b=39 | | x+7x/4=24 | | .25(2(x-1)+10)=x |